No-Signalling Assisted Zero-Error Capacity of Quantum Channels and an Information Theoretic Interpretation of the Lovász Number Full version at: arXiv:1409.3426
نویسندگان
چکیده
We study the one-shot zero-error classical capacity of quantum channels assisted by quantum no-signalling correlations, and the reverse problem of simulation. Both lead to simple semi-definite programmings whose solutions can be given in terms of conditional min-entropies. We show that the asymptotic simulation cost is precisely the conditional min-entropy of the ChoiJamiołkowski matrix of the given channel. For classical-quantum channels, the asymptotic capacity is reduced to a quantum fractional packing number suggested by Harrow, which leads to the first information-theoretic operational interpretation of the celebrated Lovász θ function as the zero-error classical capacity of a graph assisted by quantum no-signalling correlations.
منابع مشابه
Zero-Error Classical Channel Capacity and Simulation Cost Assisted by Quantum Non-Signalling Correlations
We study the one-shot zero-error classical capacity of quantum channels assisted by quantum non-signalling correlations, and the reverse problem of simulation. Both lead to simple semi-definite programmings whose solutions can be given in terms of the conditional min-entropies. We show that the asymptotic simulation cost is precisely the conditional min-entropy of the Choi-Jamiołkowski matrix o...
متن کاملQuantum non-signalling assisted zero-error classical capacity of qubit channels
In this paper, we explicitly evaluate the one-shot quantum non-signalling assisted zero-error classical capacities M 0 for qubit channels. In particular, we show that for nonunital qubit channels, M QNS 0 = 1, which implies that in the one-shot setting, nonunital qubit channels cannot transmit any information with zero probability of error even when assisted by quantum non-signalling correlatio...
متن کاملQuantum channels from association schemes
We propose in this note the study of quantum channels from association schemes. This is done by interpreting the (0, 1)-matrices of a scheme as the Kraus operators of a channel. Working in the framework of one-shot zero-error information theory, we give bounds and closed formulas for various independence numbers of the relative non-commutative (confusability) graphs, or, equivalently, graphical...
متن کاملOn the one-shot zero-error classical capacity of classical-quantum channels assisted by quantum non-signalling correlations
Duan and Winter studied the one-shot zero-error classical capacity of a quantum channel assisted by quantum non-signalling correlations, and formulated this problem as a semidefinite program depending only on the Kraus operator space of the channel. For the class of classical-quantum channels, they showed that the asymptotic zero-error classical capacity assisted by quantum non-signalling corre...
متن کاملQuantum source-channel coding and non-commutative graph theory
Alice and Bob receive a bipartite state (possibly entangled) from some finite collection or from some subspace. Alice sends a message to Bob through a noisy quantum channel such that Bob may determine the initial state, with zero chance of error. This framework encompasses, for example, teleportation, dense coding, entanglement assisted quantum channel capacity, and one-way communication comple...
متن کامل